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ON SOME INEQUALITIES FOR THE 
GAMMA AND PSI FUNCTIONS 

HORST ALZER 

ABSTRACT. We present new inequalities for the gamma and psi functions, 
and we provide new classes of completely monotonic, star-shaped, and super- 
additive functions which are ijelated to r and k. 

Euler's gamma function 

IF(x) J -ttxl dt (x > 0) 

is one of the most important functions in analysis and its applications. The history 
and the development of this function are described in detail in a paper by P. J. 
Davis [10]. 

There exists a very extensive literature on the gamma function. In particular, 
numerous remarkable inequalities involving F and its logarithmic derivative ?) = 
F/F have been published by different authors; see, e.g., [2], [3], [6], [7], [9], [12], [13], 
[18]-[27], [29]-[33], [35]-[46], [50]. Many of these inequalities follow immediately 
from the monotonicity properties of functions which are closely related to r and 
?). In several recent papers [2], [9], [24], [39] it is proved, that these functions are 
not only m'onotonic, but even completely monotonic. We recall that a function f is 

said to be completely monotonic on an interval I if f has derivatives of all orders 
on I which alternate successively in sign, that is, 

(11) (-l)nf(n) (X) > O 

for all x C I and for all n > 0. If inequality (1.1) is strict for all x C I and all n > 0, 
then f is said to be strictly completely monotonic. 

It is known that completely monotonic functions play an eminent role in areas 
like probability theory [15], numerical analysis [49], physics [11], and the theory 
of special functions. For instance, M. E. Muldoon [39] showed how the notation 
of complete monotonicity can be used to characterize the gamma function. An 
interesting exposition of the main results on completely monotonic functions is 
given in [48]. 

"In view of the importance of completely monotonic functions ... it may be of 
interest to add to the available list of such functions" [24, p. 1]. It is the main 
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purpose of this paper to present new classes of completely monotonic functions 
which are all closely related to the gamma and psi functions. Applications of 
our monotonicity theorems lead to new inequalities for r and 4'. Furthermore, 
we extend and sharpen known inequalities due to W. Gautschi, H. Minc and L. 
Sathre, and others, and we provide new classes of star-shaped and super-additive 
functions. In the final section we apply one of our results to present functions which 
are Laplace transforms of infinitely divisible probability measures. 

2 

In a recently published article G. D. Anderson et al. [3] proved that the func- 
tion f(x) = x(log(x) - +i(x)) is strictly decreasing and strictly convex on (0, oo). 
Moreover, the authors presented (complicated) proofs for 

(2.1) lim f (x) = 1 and lim f (x) = 1/2. 
x--+O x-+oo 

We note that the limits (2.1) follow immediately from the representations 

f(x) =xlog(x) -x4'(x+1)+1 

and 

f(z) 2 + 2 - 10 (? < 0 < 1); 2 12x 120x3 (< 1) 

see [16, p. 824]. 
From (2.1) and the maonotonicity of f we conclude 

1 1 
(2.2) - < log(x) - 4'(x) < - (x > 0). 2x x 

This extends a result of H. Minc and L. Sathre [37], who established (2.2) for x > 1, 
and used it to prove several discrete inequalities involving the geometric mean of 
the first n positive integers. Refinements of (2.2) were given by L. Gordon [22]. 
Our first theorem provides an extension of the result given by Anderson et al.; we 
prove that f is not only decreasing and convex, but even completely monotonic. 

Theorem 1. Let a be a real number. The function 

fa(X) = xa (log(x) -(x)) 

is strictly completely monotonic on (0, oo) if and only if a < 1. 

Proof. First, we show that fi is strictly completely monotonic on (0, oo). Using 
Binet's formula [14, p. 18] we obtain the representation 

(2.3) fl(x) = x J op(t)e `dt, 

where 

(p(t = /(1e-t)-1/lt. 

Easy computations reveal that the function o is strictly increasing on (0, oo) with 
limt,o o(t) = 1/2 and limt,>, (t) = 1. 



ON SOME INEQUALITIES FOR THE GAMMA AND PSI FUNCTIONS 375 

Let n> 1; from (2.3) we get 

(2.4) 

(-)n 
(n 

)(X) =X(_ 1)n d (p(t)e--tx dt 

- n(-1)n1 dxn-1 J .o(t)etx dt 

r00 '>00 
x j (o(t)e-txtndt -n U (jt)e-txtn-l dt 

rn/x {oo 
(t)e-txtn-1(tx - n) dt + j (t)e-txtn-l(tx - n) dt. 

0 n~~~~~~~~/x 
If 0 < t < n/x, then we obtain yp(t) < yp(n/x); and if n/x < t, then we have 
yp(n/x) < yp(t). Hence, from (2.4) we get 

(n) ~~~n/x 
(-1)nf (x) > (p(on/x) e txtn (tx - n) dt 

r00 

(2.5) + ? (n/x)j e-txtn-1(tx-rn)dt 
n/x 

= yp(n/x) J etxtn-l (tx - n) dt. 

Using 

j e-txtm dt = (m!)/xm+l (x > 0; m = 0, 1, 2, ... ), 

we conclude 

e-txtn-1 (tx - n) dt 0, 

so that (2.5) implies 

(-1)nf(n) (x) > 0 for x > 0 and n = O, 1, 2,... 

From Leibniz' rule 

(-1 (t(X) V(X)) (n) =1 
71 

n( ) (-)U()X(ln (n -i) (X) 

it follows that the product of two strictly completely monotonic functions is also 
strictly completely monotonic. Since ua, (x) = x-1 (a < 1) is strictly completely 
monotonic on (0, oo), we conclude that fax(x) = uc, (x)fi(x) (a < 1) has the same 
property. 

Next, we assume that fa, is strictly completely monotonic on (0, oo). Then we 
have for all x > 0: 

f' (x) = x a-l[a (log (x) - 4)) + 1 - X't(x)] < 0, 

which implies 

x(log(x)- (x)) 

If we let x tend to 0, then we get a < 1. The proof of Theorem 1 is complete. D 
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Anderson et al. [3] used the monotonicity of fi to prove that the function g, (x) = 
xl/2(e/x)xr(x) is decreasing on (0, oo), and that g2(x) = x(e/x)xr(x) is increasing 
on (0, oo). The following theorem provides a slight extension of these results. 

Theorem 2. Let a > O r and s be real numbers. The function 

Fr(x) = xr(e/x)xr(x) 

is decreasing on (a, oo) if and only if r < 1/2; and the function 

Gs (x) = xs(e/x)xr(x) 

is increasing on (a, oo) if and only if 

s > fa(log(a) - ?/(a)) if a > 0, 
1 if a= 0. 

Proof. Since F'(x) < 0 is equivalent to 

r < x(log(x) - '(x)) = fi(x), 

the first part of Theorem 2 follows from the fact that fi is decreasing on (0, oo) and 
tends to 1/2 if x tends to oo. The second part can be proved similarly. We omit 
the details. D 

Remark. Let g be a strictly completely monotonic function on (0, oo), and let c be 
a real number. From Theorem 1 we conclude that the function 

(2.6) x 1-> g(x)(fi(x) - c) 

is strictly completely monotonic on (0, oo) if and only if c < 1/2. This extends a 
result of M. E. Muldoon [39], who proved the complete monotonicity of (2.6) for 
the special case g(x) = 1/x. 

3 

In 1974, C. H. Kimberling [28] established the following property of completely 
monotonic functions: If f is continuous on [0, oo) and completely monotonic on 
(0, oo) and satisfies 0 < f (x) < 1 for all x > 0, then log(f) is super-additive on 
[0, oo). 

We recall that a function g is said to be super-additive on an interval I if 

g(x) + g(y) ? g(x + y) for all x, y I with x + y C I. 

In the previous section we have proved that f(x) x(log(x) - b(x)) is continuous 
on [0, oo), completely monotonic on (0, oo), and 1/2 < f(x) < 1 for all x > 0, so 
that Kimberling's theorem implies 

1< f(x+Y) (x,y > O). - f (x) f(y) 
This leads to the problem to determine sharp upper and lower bounds for the ratio 
f (x + y)/(f(x)f(y)). 

Theorem 3. Let f (x) = x(log(x) - +(x)). Then we have for all real x, y > 0: 

(3.1) 1 < f()(Y) < 2. 
f f (x) f (y) 

Both bounds are best possible. 
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Proof. To prove the second inequality of (3.1) we define 

g(x, y) = f(x + y)/f(x). 

Partial differentiation yields 

(3.2) ag(x,y) _ f(x +y) [f'(x+y)- f'(x)1 
(ax f(x) f (x + y) f (x)J 

Let 

h(x, y) = f'(x + y)/f (x + y); 

then we have 

(3.3) 6h(x,y) = [f"(x + y)f (x + y) - (f'(x + y))?]/(f(x + ?))2- 

Since completely monotonic functions are log-convex (see [17]), we conclude frorm 
(3.3) and Theorem 1 that ah(x, y)/ay > 0. This implies 

(3.4) h(x, y) > h(x, 0), 

so that (3.2) and (3.4) lead to 

9g(x y) > 0 and g(x,y) < lim g(x,y) = ax x 
Thus, we have 

f (x+y) < I < 2(y) for x,y > 0. 
f(x) 

From 

lim f(x?y) = 1 
y-0O f (X)f(y)1 

and 

lim lim f (x + y) li 2 
y-+oo x-oc f (x)f (y) ymo f (y) 

we conclude that both bounds in (3.1) are sharp. 

Remark. If we set 

Qa (X, y) = fa (x + Y)/ U" (x) fa (y)) 

where f.>(x) = x(log(x) - 4(x)) and ag 78 1, then we conclude from the limit 
relations 

lim lim Qa (X, y) = lim -1 fy oO if a > 
1, 

and 

lim lim Qa(X,y)= lim 1 J if e>1, 
y-*oc x- oc Y-4oc f (y) oo if a < 1, 

that the inequalities 0 < Q, (x,y) < oo (x,y > 0;c a 1) cannot be refined. 
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4 

In 1974, W. Gautschi [20] proved that the function x F-> x+(x) is convex on 
(O,oo), and applied this result to establish some mean value inequalities involv- 
ing the gamma function. Our next theorem provides an extension of Gautschi's 
proposition. 

Theorem 4. Let n > 2 be an integer. Then we have for all real x > 0: 

(4.1) 0 <: (-l)nxn-I [XO(X)] (n) < (n -2)!. 

Both bounds are best possible. 

Proof. Let f (x) = x(log(x) - b(x)) and let n > 2. FRom Theorem 1 we obtain 

O < (-1) n f(n) (x) = (-1) n (x log (X)) (n) -(-)n (xo (x)) (n) 

(n 2)! - 
n(zo(X))(n) 

which leads to the second inequality of (4.1). Since 
00 

OM) (X) = (-1)m+lm! E (X + ?)m+l (m = 1, 2, ...), 

we get 

(4.2) (1) n(xo (x)) (n) = (-1) n [Xo(n) (X) + no (n - ) (x) 
00 i 

= n! (x + i)n+l > 0? 

which implies the left-hand inequality of (4.1). 
It remains to show that the bounds in (4.1) cannot be refined. Using (m) (x) = 

?p(m) (x + 1) + (-1)m+lm!/xm+l (m = 0,1, ... ), we get 

(-l)nXn-1(X,0(X))(n) = (-)nXn-1[X0(n)(X + 1) + no(n- )(x? 1)]. 

Hence, we have 

lim (-1) nXn 1 
(x(x))-(n) = 0. 

Let m > 1 be an integer; from 

1 [00 dt ?? I 1 [00 dt 
mxtm Jo (x + t)m+l E (x + i)m+1 < Xm+l + (x + t)m+l 

1 1 
= + 

Xm? 1 mxmX 

we conclude 
00 1 

(m -1)! < m!xm ( )m+l =-(-)mxm(m)() 
i=0 

< M!+(m1! 
x 

which implies 

(4.3) lim (-1)mxm0(m)(x) -(m - 1)! (m > 1). 
xoo+0 
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From (4.2) and (4.3) we obtain 

lim (-1)'x'- 1(xX6(x)) () = (n - 2)!. 
X-o0C 

Hence, both bounds in (4.1) are best possible. O 

5 

A function f is said to be star-shaped on (0, oo) if 

(5.1) f (ax) < af(x) 
is valid for all x > 0 and for all a C (0, 1). These functions have been investi- 
gated intensively by A. M. Bruckner and E. Ostrow [8]. It is well known that star- 
shaped functions are super-additive. Indeed, from (5.1) we obtain f(x) < 

(x/(x + y))f(x + y) and f(y) < (y/(x + y))f(x + y); summing leads to f(x)+ 
f(y) < f(x + y). In this section we answer the questions: For which real ,3 is 

x ( k)(X) - (log(X))(k 0 k ) 

star-shaped; and for which ,3 is this function super-additive? 

Theorem 5. Let k > 0 be an integer and let / be a real number. The function 
x H-* go (k; x))k+lx/ 

x -(k) (X)((log(x))(k) 

is star-shaped on (0, oo) if and only if 0 > -k. 

Proof. Let go be star-shaped on (0, oo). We assume (for a contradiction) that 
/3 <-k. We consider two cases. If k 0 O, then inequality 

gg(0;ax) < agg(0;x) (x > 0;0 < a <1) 

and Theorem 1 imply that 

a-d 
(5.2) 0 < log(x) - '(x) <- (ax) [log(ax) - b(ax)]. 

If we let a tend to 0, then we conclude from 3 < 0 that the product on the right- 
hand side of (5.2) tends to 0. Let k > 1; from 

1 k!j dt 
(5.3) (~-1)y+''( ) = k! (X i)k+l > (+ t)k+l 

(k- )! = ( k1)k+l(log(X))(k) 
xk 

and 

g (k; ax) < ag (k; x) 
we obtain 

0 < x- [(-1)k+1(k)(X) - (k 1)! 

K ![(_)k+l(ax)1-3(k)(ax) 
(5.4) -X -( 

- ~[(_)k?1(ax)1- Q(k) (ax + 1) + k! (ax)<d 

- (k -)!(ax)1-0-k]. 
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Since /B <-k, we conclude that each term on the right-hand side of (5.4) tends to 
0 if a tends to 0. Hence, if go is star-shaped on (0, oo), then ,3> -k. 

Next, we assume that ,B> -k; to prove 

(5.5) g9(k;ax) < ag, (k;x) 

for x > 0 and a c (0,1), we reconsider two cases. 
Case 1: k = 0. Then inequality (5.5) is equivalent to 

log(x) - O(x) < a1 - [log(ax) - O(ax)] = F(a), say. 

It suffices to show that F is decreasing on (0, 1]. We obtain 

a3F'(a) - (1- /3)[log(ax) - 4'(ax)] + 1 - (ax) 0'(ax). 

If we set 

G(z) = (1 -/3)[log(z) - (z)] + 1 - z?b(z) (z > 0), 

then we conclude from (5.3) (with k = 1) and the right-hand side inequality of (4.1) 
(with n = 2) that 

G'(z) = /(V)'(z) - 1/z) + 1/z - (z'4(z))" > 0. 

FRom (2.2) and (4.3) we get 

G(z) < lim G(z) = 0, 

which implies F'(a) < 0 for all a C (0, 1]. 
Case 2: k > 1. Then inequality (5.5) can be written as 

(5.6) H(1) < H(a), 

where 

H(a) al- [(-1)k+10(k) (ax) - (k - 1)!/(ax)k]. 

Differentiation yields 

(5.7) aOIH'(a) = (1- _3)[(_j)k+14,(k)(ax) -(k - 1)!/(ax)k] 

+ ( k1)k+lax4,(k+l) (ax) + k!/(ax)k. 

We replace ax by z and denote the right-hand side of (5.7) by J(z). Then we obtain 

(5.8) J'(z) = (1 _ 13)[(l)k+l1(k+l)(Z) + k!/zk+l] 
+ (_l)k+?(k+1)(Z) + (_l)k+lZ(k+2)(Z) - k!k/Zk+l. 

From the second inequality of (4.1) we obtain 

59) k!/zk+l > (_1)k(ZOl(Z))(k+2) 

= (_l)k[[Zb(k+2)(z) + (k + 2)>(k+1) (z)] 

Using (5.3), (5.8), and (5.9) we get 

J'(z) > (/ + k)[(_j)kVb(k+l)(Z) - k!/zk+l] > 0. 

Thus, J is strictly increasing on (0, oo). FRom (4.3) we conclude that lim z, zkJ(Z) 
= 0, which implies that J(z) < 0 for all z > 0. Therefore, H in decreasing on (0, 1] 
which leads to inequality (5.6). This completes the proof of Theorem 5. O 
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Theorem 6. Let k > 0 be an integer and let 3 be a real number. The function 

x H-+ ggj(k; x) =_ (-1)k+lxf3 
(k) (X)- (log(x)) (k) 

is super-additive on (0, oo) if and only if 3 > -k. 

Proof. If B > -k, then we conclude from Theorem 5 that g93 is star-shaped, which 
implies that g, is super-additive. Next, we suppose that 

(5.10) go (k; x) + go (k; y) < go (k; x + y) 

holds for all x, y > 0. We set in (5.10) x = y and obtain after simple manipulations 

2-' < x(log(x) - O(x)) if k-O 
2x(log(2x) - Vb(2x)) 

and 

2-_-k < (_l)kXk+14,(k)(X + 1) + (k - 1)!x - k! if k > 1. 
(-1)k(2x)k+1 (k)(2x + 1) + (k - 1)!(2x) - k! - 

If we let x tend to 0, then we obtain > -k. O 

Remark. In 1989, S. Y. Trimble et al. [47] introduced an interesting subclass of 
the completely monotonic functions. A function g is called strongly completely 
monotonic on (0, oo) if 

X 4 (-I)nxn+1 9(n) (X) 

is nonnegative and decreasing on (0, oo) for n = 0, 1, 2, .... The authors showed 
that these functions have a close connection to star-shaped functions. Indeed, one 
of their results states: If g is strongly completely monotonic on (0, oo) and g E 0, 
then l/g is star-shaped. 

6 

In the past many articles were published providing different inequalities for the 
ratio r(x + 1)lr(x + s), where x > 0 and s C (0, 1); see, e.g., [2], [13], [18], [25], 
[26], [29]-[31], [45], [50]. In this section we present upper and lower bounds for the 
difference O (x + 1) - /(x + s). In 1972, Y. L. Luke [33] considered the special case 
s = 1/2. He pointed out that this difference can be represented in terms of Gauss' 
hypergeometric series 

2F, (a, b; c; z) =E(a)n (b)nt 
zn 

n=O 

where (a)n = r(a + n)/r(a), namely, 

,O(x + 1) -,O(x + 1/2) 2F1(1, 2x + 1; 2x + 2;-1), 
x +1/2 

and used well-known Pade-approximation for 2F1 to obtain rational bounds for 
V6(x + 1) - +)(x + 1/2). By using a different approach we get the following sharp 
inequalities for O/(x + 1) - O(x + s). 
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Theorem 7. Let n > 0 be an integer and let x > 0 and s C (0, 1) be real numbers. 
Then we have 

(6.1) An(s; x) < b(x + 1) - +(x + s) < An(s; x) + 8n(s; x), 

where 

A(s;x) = (1-s) [++n +E (x+i? )(x+i+s) 

and 

En (s;x) log (x + n) (x+n) (1l-) (X + n + 1)(x+n+l)s 

x+n+s (x+n+s)x+n+s 

Proof. From Theorem 4 we conclude that the function h(x) = x?$'(x) is strictly 
convex on (0, oo). If we set in Jensen's inequality 

h(su + (1-s)v) < sh(u) + (1-s)h(v) (u,v > 0;u$Av;O < s < 1), 

u = x + 1 and v = x, and make use of the identity 4(x + 1) - +(x) = 1/x, then we 
get 

(6.2) 1 <- (x + 1) - +(x +s). 

Next, we replace in (6.2) x by x + 1 and obtain the following sharpening of (6.2): 

1s 1-s 
<Ox+1 ( ) 

x + s + I (x + 1)(x + s) 
Repeating this process n times we get 

n-i1 

x1 s + n 1s i= (x + i + l)(x + i + s) 

that is, the left-hand inequality of (6.1). Using the same method of proof with 
h(x) = x(log(x) - +(x)) instead of h, we obtain the second inequality of (6.1). We 
omit the details. L 

Remark. A simple calculation shows. that limn-0o 8n (s; x) = 0. 

7 

In 1964, H. Minc and L. Sathre [37] proved that the inequalities 

(7.1) o <log r(x) - x- 1log(x) +x- 1og(27r) < 1 
2 2 ~~~~~x 

are valid for x > 1. Since the function log]1(x) is asymptotically equal to the 
(divergent) series 

00 

2~~~~~2 (x -1 log(x) -x + 2 log(27r) + E i2-l)i-' 

where Bi (i = 0, 1, 2,...) are Bernoulli numbers, defined by 

t ?? t 

et-1Z = E BHiT i=O 
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(see [16, p. 823]), it is natural to ask whether it is possible to determine the sign of 

Sk(x) = logr(x) - x- log(x) + x- log(27r) 

k B (?k2) 

E 2i(2i - i)x2i-1 
(O < k E Z). 

As by-products of the next theorem we obtain sgn Sk(X) = (_)k for x > 0 and 
k > 0, and we get that (7.1) (with the upper bound 1/(12x)) holds for all x > 0. 
Further refinements of (7.1) can be found in [22]. 

Muldoon [39] investigated So(x) and proved that this function is completely 
monotonic on (0, oo). This result can be extended: 

Theorem 8. Let n > 0 be an integer. The functions 

Fn(x)=logr(x)- x- log(x) + x - log(27r) -E 

and 

Gn() = -log r(x) ? x log(x) - x + ? log(27r) + E2i n (X= -iogr(x + 
2 2 S2i(2i - 1)X2i-1 

are strictly completely monotonic on (0, oo). 

Proof. We only establish that Fn is strictly completely monotonic; the proof for 
Gn is similar. In [16, pp. 823-824] the following representations for Fn and Fn are 
given: 

Fn (x) = (4n + 1) (4n + 2) X4n+ (0<0<1) 

and 

F~x- B4n+2 0 F(X) =- 24+2 (O < 0 < 1). 

Since B4n+2 > 0 (see [4, p. 267]), we obtain Fn(x) > 0 and Fn(x) < 0 for x > 0. 
Let k > 1; differentiation yields 

1 
(_?)k+lF(k+l)() i)k+ kxk 2k+l 

(7.2) k! E | 1 ___ 

? __ [E 1jj -2i - j)J x2i+k 
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To find a lower bound for this sum we make use of Euler's summation formula [1, 
p. 806]: 

P bI >3 f(a + i) f(t) dt + -(f(a) + f(b)) 
i=O 2 

m 
+7- B23 (f (2i-l) (b) - 

f (2i- ) (a)) 
(2i) 

- p-i 
+(2m+2)! f(2m+2) (a +i+O) 

where b =a + p and 0 E (0, 1). We set f (x)= l/xk+l a= x, andm =2n in (7.3) 
and let p tend to oo. Then we obtain 

00 
21 _ 1 + 1 [B2i 2i-2 1 1 

(X + i)k+l kk + 2k?l [ 1j(2i)! fj()j x2i+k 

(7.4)_ 
B4n?2 4n+1 o1 

+ (4n + 2)! I ( k 
i__) E (x + 0 + i)4n+k+3 

Using B4n+2 > 0 and 174n+l (-k - 1 -j) > 0 we get from (7.4): 

00 
I) 

2 
n+ 1 B2i 2i-2 

k 1 ) 1 

(7i5) 
> (x + i)k+l 

1 
+ 2xk+l 

- B2i)! 
- - 

1 
-j x2i+k 

so that (7.2) and (7.5) imply 

k!(_l)k+lF(k+l) (X) 

i=l t(-I)k l 1 k1 2i-j)- 1 (--12i-2 B2i 

>~i [( -k-11f(2 -j -2) II (-k-i 
- 

)] x2i+k =0, 

since the term in square brackets is equal to 0. Thus, Fn is strictly completely 
monotonic on (0, oo). El 

Using the inequalities (-l)k?1F(k?l)(x) > 0 and (-l)k+1Gn kl)(x) > 0 for 
k > 1, we obtain the following rational bounds for (-i)k+1I/(k) (x). 

Theorem 9. Let k > 1 and n > 0 be integers. Then we have for all real x > 0: 

Sk (2n; x) < (-1 W+l Yk) (X) < Sk (2n + 1; x), 

where 

(k-i)! k' k-1 
Sk(P; X) - k +2+i + B2i (2i + ) 2i+k 

i=1 L g=e i 

Remark. Related inequalities for the special case k = 1 are given in [22]. 
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8 

In 1986, J. Bustoz and M.E.H. Ismail [9] proved that the function 

p(x;a,b) - F(x)F(x r + b) (a,b > O) 
FP(x +a)F(x +b) (,b ) 

is completely monotonic on (0, oo). This generalizes a proposition of K. B. Stolarsky 
[46], who established that p is decreasing in x. The next theorem provides an 
extension of these results. 

Theorem 10. Let ai and bi (i = 1,... ,n) be real numbers such that 0 < a1 < 
< an, O < b1 < ... < bn, and Z>=1 ai < ?,=Z bi for k = 1,.., n. Then, 

n 
F(x + ai) X I, F(x +b) 

is completely monotonic on (0, oo). 

In order to prove Theorem 10 we need the following two lemmas. 

Lemma 1. If h' is completely monotonic on (0, oo), then exp(-h) is also com- 
pletely monotonic on (0, oo). 

An extension of Lemma 1 can be found in [5] and [15]. 

Lemma 2. Let ai and bi (i = 1, ... , n) be real numbers such that a1 < ... < an, 
bi < < bn, and Zk ai < Zk- bi for k = 1,.. . ,n. If the function f is 
decreasing and convex on R, then 

n n 

Zf(bi) < Zf(ai). 
i=l ~~i=l1 

A proof of Lemma 2, is given in [36, p. 10]. 

Proof of Theorem 10. Let 
n 

h(x) = (logF(x + bi) - log F(x + a%)). 
i=l 

Then we have for k > 0: 
n 

(h'(x))(k) - (V)(k) (X + bi) _ ) (k) (X + a%)). 
i=l 

Using the integral representations 
0? e-t _ e-tz 

+Z, =-+J 1 -e-t dt (z > O) 

and 
M+ o 

0e-tz tm 
l/(m)(z) = (_1)m+1 

j t dt (z > O;m = 1,2,...) 

(see [16, p. 802], [34, p. 16]), we obtain for k > 0: 

(8.1) (l) (h( ))() 1 1 (ta, - etbi) dt. 
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Since the function z -? e-tz (t > 0) is decreasing and convex on IR, we conclude 
from Lemma 2 that Ej=7 (et - e-tbi) > 0, so that (8.1) implies 

(_1)k(h'(x))(k) > 0 for x > 0 and k > 0. 

Hence, h' is completely monotonic on (0, oo). Applying Lemma 1 we obtain that 

n= r(x + ai) 
exp(-h(x)) r j (x + ai) 

is also completely monotonic on (0, oo). 

Remark. Since 

lim r(x + a) b-a 

we conclude from Theorem 10 that the inequality 

Ir(x + ai) > 1 (x > 0) 

holds for all real numbers ai and bi (i = 1, ... , n) which satisfy 0 < ai < ... < an, 
0 ? bi ? *?< bn), Z> ai < Z1k bi for k = 1 ..., n-1, and En jai =ZEn> bi. 
This generalizes an inequality given in [9]. 

In a recently published paper L. Maligranda et al. [35] established that the 
function 

n n 
x >-* r(x)nFr + E ai) / r(x + ai) 

(ai > 0; i = 1,... , n) is decreasing on (0, oo). From Theorem 10 we conclude that 
this function is not only decreasing, but even completely monotonic on (0, oo). The 
following theorem presents a slight extension of this result. 

Theorem 11. Let a be a real number and let ai (i = 1, . . .,n;n > 2) be positive 
real numbers. The function 

n n 
Xl >- r(x),ar x + ai) /Ir(x+ ai) 

is strictly completely monotonic on (0, oo) if and only if a = n - 1. 

Proof. Let 
n 

p<y(x) = r(x)Pr(x + b)/ Jl7rJ(x + ai) 
i=1 

with b = En ai. Slight modifications of the proof of Theorem 10 show that Pn-m 
is strictly completely monotonic on (0, oo). We assume now that p, is strictly 
completely monotonic on (0, oo). Then, pa is decreasing, so that we obtain for 
x > O 

n 
0logp,(x) = atb(x) + b(x + b)-Z +(x + ai) < 0. 

O=1 
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This implies for all sufficiently large x: 

(8.2) oz < E~~~ (x + ai) _ t(x + b) (8.2) a?j (x+a) 'Vix+) 

Since pa is completely monotonic on (0, oo), we obtain 

0< (pa(X)j2 [pa(X) a2( ) ( Xa() 
2 

n 
= a+'(x) + I'(x + b) 21)Y(x + ai); 

i=l1 

see [17]. Hence, we have for x > 0: 

(8.3) jE (x + ai) _ '(x + b) 

Since 

lim 0 (x + A)/0 (x) = lim I'(x + A)/@b'(x) = 1 (A > 0), 
X-+o0 X-+o0 

we conclude from (8.2) and (8.3) that ae = n-1. - 

We conclude with an application to probability theory. A probability measure 
d,i is infinitely divisible if for every natural number n there exists a probability 
measure d1un such that 

du = d,un * d,un **d,n (n times), 

where * denotes convolution. 
A proof for the following proposition, which provides a connection between infin- 

itely divisible probability measures and completely monotonic functions, can found 
in [15, p. 450]. 

Proposition. A probability measure dpL supported on a subset of [0, oo) is infinitely 
divisible if and only if 

e-Xtdu(t) = exp(-h(x)) (x > 0), 

where h has a completely monotonic derivative on (0, oo) and h(O) = 0. 

Using the Proposition and the results of this section, we obtain 

Theorem 12. Let E > 0 be a real number, and let ai and bi (i = 1,... , n) be real 
numbers such that 0 < a, < < an, 0 < b < ...< bn and Zk ai < Z 1 bi 
for k = 1, ...,n. The function 

n 
IF r(x+ + ai)IF + bi) X 

i=> l IF(x + E+ bi) IF + ai) 
is Laplace transform of an infinitely divisible probability measure. 

Related results are given in [2], [9], [24]. 
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